Lecture 1: Introduction

- Management
 - Five functions: lead, organise, plan, implement and control
 - Responsible for human, material and financial resources

- Project
 - It has a specific purpose
 - Temporary (start and finish)
 - It is unique (new product, service – if not it is an operation) (in/tangible)
 - Constraints: time, cost and quality
 - It involves risk
 - Involves collaboration
 - A program is a higher level group of projects targeted at a common goal

- Project Management
 - The application of knowledge, skills, tools and techniques to project activities to meet project requirements (PMBOK)
 - History
 - Pyramids, Roman aqueducts, Great Wall of China, WW1, Polaris missile program (created PERT), now sophisticated software tools
 - Models
 - Plan – implement – monitor and control – evaluate (cyclic)
 - Lifecycle
 - 4 phases

- Reasons for Project failure
 - Unclear expectations
 - Poor communication (project team, stakeholders, internal and external)
 - Lack of top management support
 - Poor project manager/lack of focal point
 - Project not strategically aligned with business
 - Inadequate planning, lack of resources

Lecture 2 – Organisational Strategy

- Organisational Strategy/ Strategic management process
 - 1. Review and define the organisational mission
 - “This is why we exist”
 - A broad declaration of the basic, unique purpose and scope of operations
 - Also related to marketing
 - SWOT analysis
 - Strengths and weaknesses (internal)
 - Opportunities and threats (external)
 - 2. Set long range goals and objectives
 - At a strategic, tactical or operational level ie long term, medium term and everyday
 - SMART: Specific, measurable, assignable, realistic, time related
 - 3. Analyse and formulate strategies to reach objectives: Project portfolio management
 - To ensure projects align with strategic goals
 - Project screening matrix (list projects vs strategic goals, compare quantitatively)
 - Project portfolio matric (return vs technical feasibility)
 - Financial: packback method, net present value
 - Non-financial: increase market share, disadvantage competitors, develop technology etc
 - 4. Implement strategies through projects
 - Compliance project – to survive
 - Operational projects - support current operations
 - Strategic projects - support long term organisational mission
• **Stakeholders**
 - Stakeholder = someone with a vested interest (+ve or –ve) in the outcome of the project
 - E.g. Project manager, team, sponsor, owner, customer, contracts, suppliers
 - Stakeholder management: their interest, what info they need, how to present this info, their environment, their influence
 - Influence of stakeholders decrease with time, however cost of changes increase

Lecture 3 - Organisational Structure and Defining the Project Scope

• **Organisational Structure**
 - The interaction and coordination patterns that management designs to link the tasks of individuals and groups to organisational goals
 - Differentiation is the subdivision into specialised areas
 - Integration is how the subunits interact and support each other to achieve the organisations goals
 - Different structures

<table>
<thead>
<tr>
<th>Structure</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional organisation</td>
<td>1. No change</td>
<td>1. Lack of focus</td>
</tr>
<tr>
<td></td>
<td>2. Flexibility</td>
<td>2. Poor integration</td>
</tr>
<tr>
<td></td>
<td>3. In-depth expertise</td>
<td>3. Slow</td>
</tr>
<tr>
<td></td>
<td>4. Easy post transition authority</td>
<td>4. Lack of ownership</td>
</tr>
<tr>
<td>Project organisation</td>
<td>1. Simple</td>
<td>1. Expensive</td>
</tr>
<tr>
<td>(dedicated team)</td>
<td>2. Fast</td>
<td>2. Internal strife</td>
</tr>
<tr>
<td></td>
<td>3. Cohesive</td>
<td>3. Limited technological expertise</td>
</tr>
<tr>
<td>Matrix organisation</td>
<td>1. Efficient</td>
<td>1. Dysfunctional conflict</td>
</tr>
<tr>
<td></td>
<td>2. Stronger project focus</td>
<td>2. Infighting</td>
</tr>
<tr>
<td></td>
<td>3. Easier post project transition</td>
<td>3. Stressful</td>
</tr>
<tr>
<td></td>
<td>4. Flexible</td>
<td>4. Slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5. High admin costs</td>
</tr>
</tbody>
</table>

- Interface management
 - To ensure rapid, reliable and accurate communication between stakeholders
 - To ensure objectives are supported
 - External and interfaces need to be formally controlled – project manager’s job
 - Tools include reports, change control documents, meetings and minutes, memos, emails etc

• **Project Scope**
 - Describes the project deliverables and the work needed to achieve them
 - Statement (must be clear, communicated and understood by all parties):
 - Objectives
 - Deliverables
 - Milestones
 - Boundaries and constraints (cost, time, quality)
 - Acceptance criteria
 - Identify approvals
 - Milestones and WBS help define scope

• **Milestones**
 - Checkpoints. They are what is to be achieved, not how
 - Should be
 - Understood
 - Logical
 - Overview the project
 - Identify decisions
 - Able to be controlled
 - At an appropriate level
 - Milestone plan links all major milestones and forms a logical network
Work Breakdown Structure (WBS)
- The subdivision of work into smaller and smaller elements
- Hierarchical: project, deliverable, sub deliverable, lowest sub deliverable, cost account, work package
- Work packages must have a known duration, able to assign a cost and responsibility

Uses for WBS
- The basis of all subsequent planning:
 - Integration of WBS and OBS (organisational)
 - Bottom up estimating
 - Responsibility matrix
 - Scheduling

Lecture 4 - Managing Project Cost, Risk and Quality

Cost Estimating
- First determine the need of the estimate, then technique
- Top down (management) based on experience
- Bottom up (work packages estimated in detail, uses WBS)

<table>
<thead>
<tr>
<th>Type</th>
<th>Screening</th>
<th>Feasibility</th>
<th>Budget</th>
<th>Tender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used for</td>
<td>Project initiation, ranking of alternatives</td>
<td>More detailed analysis of the preferred option</td>
<td>Approval</td>
<td>Tender, control</td>
</tr>
<tr>
<td>Timing</td>
<td>Definition phase</td>
<td>Definition phase</td>
<td>Planning phase</td>
<td>Planning phase</td>
</tr>
<tr>
<td>Techniques</td>
<td>Apportioning (assigning percentages to packages), ratio (eg $/m^2$ of bridge)</td>
<td>Historical factoring</td>
<td>Factoring and material takeoff, (eg $/m^3$ concrete)</td>
<td>Full material takeoff, bottom up estimate</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±40%</td>
<td>±25%</td>
<td>±15%</td>
<td>±5%</td>
</tr>
<tr>
<td>Advantages</td>
<td>Quick, only general design info needed</td>
<td>Quick</td>
<td>More accurate</td>
<td>Accurate</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Inaccurate</td>
<td>Inaccurate, some design info needed</td>
<td>Design info needed, time consuming</td>
<td>Detailed info needed, time consuming, expensive</td>
</tr>
</tbody>
</table>

- Direct costs = materials, labour, equipment, subcontractor, site overheads
- Indirect costs = admin office, training, finance, supervision, insurance, utilities etc
- Contingency = percentage to offset risk, higher risk = higher contingency
- Profit
- Estimate becomes budget when you win the tender

Risk
- Proactive not reactive
- Risk identification
 - External: top down (market conditions, politics, whether...)
 - Internal: bottom up (assumptions, size, complexity, technology....)
- Risk assessment
 - In terms of likelihood, severity and controllability
 - Tools: Risk severity matrix (likelihood vs impact), PERT, risk inventory/register...
- Risk response
 - Mitigate
 - Avoid
 - Transfer
 - Share
 - Retain
 - Tools: risk management plan, risk response matrix, change requests, performance reports

Quality
- Definition
 - 1. Fit for purpose
 - 2. Meets the customer’s requirements
• 3. Meets the specification
• 4. Satisfies the customer

Quality planning
• Identify which quality standards are relevant: statutory, technical, organisational
• Establish quality checklist and baseline

Quality assurance
• Quality audits, change management system
• Get it right the first time

Quality costs
• Prevention: planning, control and audit, safety equipment, insurance...
• Appraisal: inspections, performance testing, reporting results, certificates...
• Failure: repair, scrap, waste, reinspection and testing, defect diagnosis, recall, warranty...

Lecture 5 – Developing a Project Plan

• Scheduling
 o Network diagram and subsequent Gantt chart become the baseline for monitoring time
 o Network shows the logical sequence of activities through a project to its completion

Duration
• Task effort is the time to perform a task, time duration is the time period over which the task is performed
• Estimating
 • Ask the people who do the work, get an objective experts opinion
 • Use historical records (record actual times for use in next job)
 • Use analytical estimates
 • Use accepted performance rates
• Make allowances for
 • Time to get design info
 • Time to get quotes
 • Statutory approvals and inspections
 • Specialist resources
 • Break in/out activities
 • Learning curve

Examples
• With blue sheet
• http://people.brunel.ac.uk/~mastjjb/jeb/or/netaonmore.html

Lecture 6 – Networks and Pert

• Precedence Networks
 o 4 types of lag: finish to start, start to start, start to finish, finish to finish

• PERT
 o Developed during Polaris Missile program
 o 3 durations obtained using Delphi or other techniques:
 • Pessimistic b (1% chance of doing worse than this)
 • Optimistic a (1% chance of doing worse than this)
 • Most likely m
 o \[t_e = \frac{(a + 4m + b)}{6} \]
 o \[\delta^2 = \frac{[(b - a)]^2}{6} \]
 o \[Z = \frac{(t_s - t_e)}{\sqrt{\text{the sum of the } \delta^2 \text{ of the critical path}}} \]
Where \(t_e \) = weighted average activity time
\(\delta^2 \) = variance
\(Z \) = z score (see table to get probability)
and \(t_s \) = scheduled time (the time we want to see the probability of it finishing within)

• Examples
 o Attached to blue sheet
 o In lecture notes
 o Textbook pg 244